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Fractals and dynamical chaos in a two-dimensional Lorentz gas with sinks
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We consider a two-dimensional periodic reactive Lorentz gas, in which a moving point particle undergoes
elastic collisions on fixed hard disks and annihilates on absorbing disks, called sinks. We present clear evi-
dence of the existence of a fractal repeller in this open system. Moreover, we establish a relation between the
reaction rate, describing the macroscopic evolution of the system, and two characteristic quantities of the
microscopic chaos: the average Lyapunov exponent and the Hausdorff codimension of the fractal repeller.
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I. INTRODUCTION

Many recent works have been devoted to an understa
ing of macroscopic irreversible processes, such as diffus
or reaction, studied from a microscopic point of view, usi
deterministic chaotic models@1–7#. An efficient way to es-
tablish relations between the characteristic quantities of
croscopic chaos and the macroscopic transport coefficien
the escape-rate formalism@3–7#. In this formalism, a dy-
namical quantity called the Helfand momentG(a) is associ-
ated with each transport property@8#. For large enough sys
tems and long enough times, this Helfand moment ha
diffusive evolution determined by the transport coefficienta
considered. This diffusionlike process can be character
by the escape rate of trajectories out of a phase-space re
defined by bounds on the Helfand moment2x/2<Gt

(a)

<x/2, x being real and positive@4#. Almost all trajectories
escape after a finite time. The trajectories that remain trap
forever in the prescribed bounds form an unstable fractal
in the phase space. This set is called the fractal repelle
the case of diffusion, the Helfand moment is simply the p
sition r : the particle itself escapes out of a region defined
the configuration space.

The fractal repeller is characterized by its chaotic a
fractal properties, which can be studied in the large-devia
formalism, in particular, in terms of the topological pressu
P(b) @9#. This function depends on a real parameterb.
Varying its value allows us to scan the dynamical struct
of the system. Moreover, the average Lyapunov expon
and, for a system with escape, the escape rate and the di
sion of the fractal repeller, can be calculated from the to
logical pressureP(b). This formalism has already been a
plied to diffusion in the one-dimensional lattice Lorentz g
@10–14#.

Escape processes have been considered for different
tems such as one-dimensional mappings@15,16#, chaotic-
scattering systems@7,17,18#, and systems with a color dy
namics@19#, as well as in spatially extended systems w
absorbing boundaries on the external borders of the sys
@3,6,7#. Until now, little work has been devoted to the esca
of particles or trajectories from inside the system. In t
direction, Kaufmannet al.studied processes of transient ch
otic diffusion in one-dimensional mappings and in cha
with lateral escape besides an escape from the ends o
1063-651X/2001/63~3!/036227~10!/$15.00 63 0362
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chain @20,21#. For those systems, Kaufmann generalized
escape-rate formula of Ref.@3# ~see Ref.@21#!.

The purpose of the present paper is to study a tw
dimensional~2D! periodic reactive Lorentz gas with the po
sible escape of particles from inside the system due to
presence of absorbing disks, modeling reactive centers w
the moving point particle is annihilated. In a previous pap
@22#, we considered a 2D periodic reactive Lorentz g
where the reaction is a reversible isomerization of the po
particle between statesA and B, also known as a color dy
namics. In the present paper, our aim is to study a sim
model but with a reaction of annihilation, instead of a
isomerization. As in Ref.@22#, the point particle undergoe
elastic collisions on hard disks fixed in the plane. Some
the disks—called sinks or absorbers—have absorbing bou
aries: the point particle is absorbed upon collision on one
those absorbing disks. All the other disks are inert for
reaction, so that the reaction scheme is the following if
call X the moving particle:

X1 inert disk↔X1 inert disk, ~1!

X1sink→B1sink. ~2!

In the periodic case, the inert disks and the sinks form re
lar arrays. This system is an open Lorentz gas in the se
that the point particle escapes when colliding on a si
Therefore, most particles will disappear from the system
cept for a set of zero probability forming a fractal repell
composed of the trajectories which move forever betwe
the sinks. The decay in the number of particles due to
annihilation is characterized by an escape rate which
equivalent to the reaction rate in such models.

In the present paper, one of our aims is to establis
relationship between the reaction rate, on the one hand,
the characteristic quantities of the fractal and chaotic pr
erties of the repeller, on the other hand, which are its Ha
dorff dimension and the average Lyapunov exponent.

The paper is organized as follows. The model is int
duced in Sec. II. The escape process and the fractal rep
are studied in Sec. III. A nonequilibrium measure defined
the fractal repeller is defined in Sec. IV, which allows us
calculate the average Lyapunov exponent in Sec. V. T
pressure function defined in the case of the Lorentz ga
©2001 The American Physical Society27-1
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I. CLAUS AND P. GASPARD PHYSICAL REVIEW E63 036227
presented in Sec. VI, with the derivation of relations betwe
the escape rate, the dimensions of the fractal repeller, and
average Lyapunov exponent. Finally, the dependence of
escape rate and of the codimension of the fractal repelle
the density of sinks is presented in Sec. VII. The conclusi
are drawn in Sec. VIII.

II. DESCRIPTION OF THE MODEL

In a two-dimensional periodic Lorentz gas, a point p
ticle undergoes elastic collisions on hard disks fixed in
plane and forming a regular triangular lattice. Let us den
the distance between the centers of the disks asd, and their
radius, being equal to unity in the numerical calculations,
a. We shall work in the finite horizon regime 2a,d
,4a/A3, for which the diffusion coefficient is known to b
finite @23,24#. In our model, some of the disks are sin
which absorb the moving particle upon collision. These sin
form a regular triangular superlattice over the disk latti
The fundamental vectors of the disk lattice aree15d(1,0)

and e25d( 1
2 ,A3/2). Those of the sink superlattice areE1

5nd( 3
2 ,A3/2) andE25nd(0,2A3), wheren is an integer

parameter controlling the density of sinks in the system
the directions ofE1 andE2, one disk overn is a sink. Con-
figurations withn51 andn52 are depicted in Fig. 1. Fo
n51, the fundamental cell of the superlattice contains th
disks, among which one is a sink which can be chosen
shown in Fig. 1~a!. The shape of this fundamental cell
used as the building block for the fundamental cell for larg
n, as shown in Fig. 1~b! for the casen52. Therefore, for
largern, the fundamental cell of the superlattice is made
n3n of these blocks of three disks. Accordingly, one di
overN53n2 is a sink, so that the density of all the disksrd
and the density of the sinksrs are:

rd5
2

A3d2
~3!

and

rs5
rd

N
5

2

3A3~nd!2
, ~4!

FIG. 1. ~a! Elementary cell of the superlattice of the sinks, in t
casen51; ~b! in the casen52.
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respectively. The phase-space coordinates of the particle
its position and its velocity (x,y,vx ,vy). The collisions with
the disks being elastic, the energy of the particle is conser
and the magnitude of the velocity is a constant of mot
ivi5v. In the numerical calculations, we shall take it equ
to unity, ivi51. The energy shell defines a thre
dimensional phase space where the coordinates of the
ticle are (x,y,c), c being the angle between the velocity an
thex axis. Using the periodicity of this system, we can stu
its dynamics in an elementary cell of the sinks superlatti
containingN53n2 disks. We shall use the Birkhoff coordi
nates x5( j ,u,Ã), with 1, j ,N53n2, 0<u,2p, and
21<Ã<1. The integerj defines the disk of the elementar
cell on which the collision takes place,u is an angle giving
the position of the impact on this disk, andÃ5sinf is the
sine of the anglef between the velocity after collision an
the normal at the impact. At an elastic collision, the veloc
of the point particle changes instantaneously according to
collision rule

vi
(1)5vi

(2)22~ni•vi
(2)!vi

(2) , ~5!

wherevi
(1) is the velocity after thei th collision, vi

(2) is the
velocity before thei th collision, andni is the normal at the
impact point. We notice that, in Birkhoff coordinates, th
dynamics reduces to a mapping which is known to be a
preserving@7#.

III. ESCAPE AND FRACTAL REPELLER

Our model is an open Lorentz gas: the point particle
capes when it is absorbed by a sink. Another type of op
Lorentz gas, without reaction but with absorbing boundar
of large spatial extension, was studied in Ref.@6#. The meth-
ods developed in Ref.@6# extend to the present model, as w
explain below.

For a typical initial conditionG05(x0 ,y0 ,c0), the par-
ticle will collide on a sink and escape after a finite time: th
time is called the escape timeTn(G0), wheren refers to the
configuration of the sinks. Although this time is finite fo
most trajectories, there exist trajectories that never collide
a sink and remain trapped forever in the Lorentz gas. Th
trajectories can be periodic or nonperiodic. Because of
defocusing character of the collisions on the disks, these
jectories are unstable and form a fractal set of zero Lebes
measure in phase space: this set is therefore called the fr
repellerFn . This fractal repeller is typical of the chaotic
scattering processes@6,7,16–18#.

An evidence of the fractal character of this repeller
given by the escape time as a function of the initial con
tion, as shown in Fig. 2. This function is finite for almost a
initial conditions, since the particle collides on a sink afte
finite time. However, this time is infinite for trajectorie
trapped in the fractal repeller. They correspond to initial co
ditions on the stable manifold of a trapped trajectory. T
singularities of the escape-time function are thus on a fra
set formed by the stable manifolds of the fractal repell
Ws(Fn).

Figure 2 shows this escape time as a function of the ini
7-2
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FIG. 2. Escape time function in the case wh
n52 and d52.15. ~a! the initial positions are
taken at a varying angleu0 around the black disk,
the dashed ones being the sinks; the initial velo
ity is always taken along the normal of the dis
so thatÃ050.0 in Birkhoff coordinates.~b! u0

P@0,2p#. ~c! u0P@0,p/3#. ~d! u0P@0,p/12#.
The scaling behavior appears in~c! and ~d!.
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position at an angleu0 around a next-nearest-neighbor di
of the sink, shown in black in Fig. 2~a!, in the case where
n52, andd52.15. The velocity is normal to the disk. A
can be seen in Fig. 2~b!, the singularities seem to occup
most of the initial conditions, although they are of zero L
besgue measure. This is due to the fact that the Hausd
dimension of the fractal set is close to 1~see below!. The two
largest windows of the escape time are centered atu05p/6
and 7p/6. They correspond to the trajectories directly colli
ing on the two nearest sinks. The self-similar character of
fractal set appears in Figs. 2~c! and 2~d!.

The escape dynamics of this system can be further
scribed by a quantity called the escape rate@6#. Let us take
N0 initial conditions, forming a set$G0

( j )%, chosen according
to an initial measuren0 so that

dn0~G!5 lim
N0→`

1

N0
(
j 51

N0

d~G2G0
( j )!dG, ~6!

whereG5(x,y,c). After a timet, only a numberNt of par-
ticles will remain in the system. This number will decrea
monotonically witht. The set of particles remaining in th
Lorentz gas at timet is given by those having an escape tim
Tn(G0) larger thant:

Yn~ t !5$G0 :t,Tn~G0!%. ~7!

The decay of the number of particles is then described b

lim
N0→`

Nt

N0
5n0@Yn~ t !#5E

Yn(t)
dn0~G0!. ~8!
03622
-
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This decay is expected to be exponential since the trap
trajectories are exponentially unstable and the system is
tially periodic. The escape rate is thus defined as

g5 lim
t→1`

2
1

t
ln n0@Yn~ t !#. ~9!

The escape rate is a characteristic quantity of the syst
independent of the initial measuren0 chosen, as long as thi
latter is smooth enough. The escape rate is easily acces
by numerical computations, as shown in Fig. 3. The log
rithm of the fraction of particles remaining in the syste
after a timeT, NT /N0, is plotted as a function ofT. The slope
gives the escape rate. In this example,n52 and d52.25,
and we obtaing50.0378.

FIG. 3. Logarithm of the fraction of particles remaining in th
Lorentz gas at timeT, NT /N0, as a function of timeT, in the case
when n52 and d52.25. The slope gives the escape rate: h
g50.0378.
7-3
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I. CLAUS AND P. GASPARD PHYSICAL REVIEW E63 036227
IV. NONEQUILIBRIUM PROBABILITY MEASURE

For a system with escape, the ergodic hypothesis is
appropriate since most trajectories escape after a finite t
a time average does not provide interesting information.
the contrary, we are expecting that the important informat
is contained in the trajectories forever trapped inside the
tem. The invariant measure we are interested in thus has
fractal repellerFn as support. This invariant measure can
constructed by considering statistical averages over all
trajectories which have not yet escaped during a tim
reversal symmetric interval@2T/2,1T/2# and, thereafter,
taking the limitT→`. Indeed, the trajectories which do n
escape during@0,1T/2# have initial conditions on the stabl
manifolds of the repeller,Ws(Fn), in the limit T→`. On the
other hand, the initial conditions of the trajectories which
not escape during@2T/2,0# approach the unstable manifold
Wu(Fn) in the same limit. In the limitT→`, imposing no
escape over the whole interval@2T/2,1T/2# selects trajec-
tories which approach closer and closer the repeller given
the intersection:

Ws~Fn!ùWu~Fn!5Fn . ~10!

Statistical averages over these selected trajectories defin
invariant measure having the fractal repeller for supp
@5,7#.

In systems with a time-reversal symmetric collision d
namics such as the present one, statistical averages c
lated over the aforementioned invariant measure are equ
lent to statistical averages over a conditionally invaria
measure defined by selecting the trajectories which do
escape during@0,1T/2# only and taking the limitT→` ~for
further information, see Refs.@5–7,25#!. This conditionally
invariant measure was shown in Ref.@6# to be given by

dmne~G!

5 lim
T→1`

1

TE0

T

dt
1

n0@Yn~T!#
I Yn(T)~F2tG!dn0~F2tG!,

~11!

where I E(G) is the indicator function of the setE in phase
space andn0 is the initial measure@Eq. ~6!#. The ensemble
average is here taken over the trajectories which are sti
the system at timeT. In the limit of low densities of sinks
we note that the system tends to the closed Lorentz
whereupon the invariant and the conditionally invariant m
sures reduce to the microcanonical equilibrium invari
measure. In this limit, the escape process stops and the
tal repeller fills the whole phase space. Using measure~11!,
we shall now define the average Lyapunov exponent,
topological pressure and the fractal dimensions of the re
ler for the open system.

V. AVERAGE LYAPUNOV EXPONENT

According to the conditionally invariant probability mea
sure@Eq. ~11!#, the positive Lyapunov exponent is defined
the average of the logarithm of the stretching factorsLT at
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time T over theNT particles still in the system at this tim
@6#,

l5 lim
T→`

lim
N0→`

1

T

1

NT
(
j 51

NT

ln LT~G0
( j )!. ~12!

In the case of the Lorentz gas, the stretching factor can
obtained as follows@6#.

Consider a front of particles issued from the same ini
position but with different velocity angles. This front is cha
acterized by a radius of curvatureR(G t), G t being a refer-
ence trajectory considered at timet. For G t , the i th collision
is supposed to occur at the timet i . Between two collisions,
this radius of curvature increases linearly with the time a

R~G t!5v~ t2t i 21!1Ri 21
(1) , ~13!

wherev is the particle velocity,t i 21 is the time of the pre-
vious collision, andRi 21

(1) is the radius of curvature after th
previous collision. Therefore, the radius of curvature bef
the i th collision is given byRi

(2)5R(G t i
). At an impact, the

radius of curvature is modified according to the geometry
the collision: the relation between the curvature before a
after thei th collision is given by

1

Ri
(1)

5
1

Ri
(2)

1
2

a cosf i
, ~14!

wheref i is the angle between the vectorsvi
(1) , andni in-

troduced in Eq.~5!.
Using Eqs.~13! and ~14!, we can calculate the stretchin

factor @6,7#, and we obtain

LT~G0!5expE
T0

T v
R~G t!

dt

5
t1

T0
H )

i 52

n F11
v~ t i2t i 21!

Ri 21
(1) G J F11

v~T2tn!

Rn
(1) G

~15!

for a segment of trajectory withn collisions such that
0,T0,t1 and tn,T. The time integral in Eq.~15! should
start from a strictly positive timeT0.0 since here we as
sume that the radius of curvature is set equal to zero at
initial condition, R0

(1)50. We note that several choices a
here possible, which all lead to the same value for the av
age Lyapunov exponent@Eq. ~12!#.

Numerically, the positive Lyapunov exponent is obtain
by plotting the average of the logarithm of the stretchi
factor as a function of time according to Eq.~12!, the slope
giving the Lyapunov exponent. An example is depicted
Fig. 4, in the case whenn52 andd52.25: herel51.9. An
important observation is that the Lyapunov exponent va
very slightly with the density of sinks: the dependence
smaller than the numerical error. A similar robustness w
observed for the open Lorentz gas with external absorb
boundaries@6#.
7-4
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VI. LARGE-DEVIATION FORMALISM

A. Topological pressure

The dynamics on the fractal repeller can be character
in an efficient way thanks to the large-deviation formalis
and, in particular, in terms of the topological pressure. T
function depends on a real parameterb: by varying its value,
we are able to scan the dynamical structure of the system@9#.
In the case of a Lorentz gas, the topological pressure ca
defined as follows@6#:

P~b!5 lim
T→1`

lim
N0→`

1

T
ln

1

N0
(
j 51

NT

@L~G0
( j )!#12b. ~16!

Using the definition of the escape rate@Eqs.~8! and~9!#, Eq.
~16! can be rewritten as

P~b!52g1 lim
T→1`

lim
N0→`

1

T
ln

1

NT
(
j 51

NT

@L~G0
( j )!#12b.

~17!

FIG. 4. Average of the logarithm of the stretching factors, a
function of timeT, in the case whenn52 andd52.25. The slope
gives the average Lyapunov exponentl51.9.
03622
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As can be seen from Eq.~16!, for b,1, the dominant
contribution toP(b) is due to the most unstable trajectori
corresponding to the largest values ofL. Conversely, for
b.1, the less unstable trajectories dominate. Forb51, Eq.
~17! reduces to@9#

P~1!52g. ~18!

Moreover, the derivative ofP(b) with respect tob taken at
b51 gives us the Lyapunov exponent@9#

l52P8~1!. ~19!

The topological pressure has been computed numeric
using Eq.~16!, in the case whenn52 andd52.25, as shown
in Fig. 5. The value of the escape rate obtained from
~18!, g50.0378, is equal to the simulation result shown
Fig. 3. In Fig. 5, corresponding to a periodic Lorentz g
with a finite horizon, we observe that the pressure function
regular, so that no dynamical phase transition occurs in
case.

B. Generalized fractal dimensions

Important tools to characterize the fractal properties of
repeller are its generalized fractal dimensions. When a pr
ability measure is associated with a fractal, as is the c
here, it forms most often a multifractal with nontrivial gen
eralized fractal dimensionsDq . The embedding dimension
of the repeller is here equal to three, since we are working
a three-dimensional phase space. Therefore, the fracta
mensions of the repeller belong to the interval 0<Dq,3.
We are not going to calculate immediately the dimensio
Dq of the fractal repeller of the flow itself. Instead, we co
sider a lineL across the stable manifolds of the fractal r
pellerFn . The intersection of this line with the stable man
folds of the fractal repeller is another fractalf n , which is
characterized by so-calledpartial fractal dimensions belong
ing to the interval 0<dq,1.

For given q, the dimensionDq is related to the partia
dimensiondq by

a

FIG. 5. ~a! Topological pressureP(b) in the case whenn52 andd52.25.~b! Zoom of the region aroundb51; the zero ofP(b) gives
the value of the Hausdorff dimensiondH50.98, and the value ofP(b51) gives the escape rateg50.0378.
7-5
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I. CLAUS AND P. GASPARD PHYSICAL REVIEW E63 036227
Dq52dq11, ~20!

because the system is time reversal symmetric, so tha
partial dimension in the stable direction is equal to the one
the unstable direction. Furthermore, the direction of the fl
contributes a partial dimension equal to unity.

If we suppose a covering of the fractalf n by intervals of
equal lengthl, the generalized dimensions are defined as@26#

dq5 lim
l→0

1

q21

1

ln l
ln (

j 51

Nl

pj
q , ~21!

whereNl is the number of intervals. Forq50, we find the
usual definition of the Hausdorff dimension

dH5d05 lim
l→0

2
ln Nl

ln l
. ~22!

For q51, we obtain the so-called information dimension

dI5d15 lim
q→1

dq5 lim
l→0

1

ln l (
j 51

Nl

pj ln pj . ~23!

For a uniform probability measure,pj5p51/N for all the
intervals, and the information dimensiondI is equal to the
Hausdorff dimensiondH . In general, we expect the probab
ity measure to be nonuniform and, therefore, the repelle
be multifractal, in which casedIÞdH .

A more general definition ofdq implies a covering of the
fractal by intervals of various lengthsl j , l j, l @26#. The
dimensiondq is obtained by imposing the quantity

lim
N→`

(
j 51

N pj
q

l j
(q21)d

~24!

to be of the order of unity. This is only the case for a critic
valued5dq which defines the generalized dimensiondq .

In order to evaluatedq in the case of our fractal repelle
let us consider the escape-time function along the lineL. The
set of initial conditions for which the escape time is larg
thanT is composed of many small intervals forming a co
ering of the fractalf n . If we consider a reference initia
condition G0

( j ) in a given intervalj, the lengthl j of this in-
terval is inversely proportional to the stretching factor up
time T @6,15,16,29,30#,

l j;
1

LT~G0
( j )!

, ~25!

and the probability of this interval is given by

pj;
exp~gT!

LT~G0
( j )!

. ~26!

Considering this covering, definition~24! of the generalized
dimensiondq can be rewritten in terms of the topologic
pressure given by Eq.~17!, as shown in Refs.@6,15,16,30#:
03622
he
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q g52P@q1~12q!dq#. ~27!

For q50, the Hausdorff dimensiondH is thus found to be
given by

05P~dH!. ~28!

Numerically, in the case whenn52 andd52.25, the zero of
the topological pressure gives usdH50.98, as can be seen i
Fig. 5~b!.

By differentiating Eq.~27! with respect toq and taking
q51, the escape rate is obtained as

g52P8~1!~12dI !5l~12dI !. ~29!

We introduce the fractal codimensions as@6#

cH512dH , ~30!

cI512dI . ~31!

Equation~29! can thus also be written as

g5lcI , ~32!

which expresses the escape rate—or reaction rate—in te
of the positive Lyapunov exponent and the information co
mension.

C. Hausdorff codimension by the algorithm of Maryland

A numerical algorithm developed by the group of Mar
land allows us to calculate the Hausdorff codimension of
fractal repeller@6,31#. The basic idea of this algorithm is t
consider an ensemble of pairs of initial conditions, separa
by «, along the lineL defined in Sec. VI B. A pair is said to
be uncertain if there is a singularity of the escape-time fu
tion between both initial conditions. On the other hand, wh
the pair is certain, the initial conditions belong to an interv
of continuity of the escape-time function. The fraction
uncertain pairs is known to depends on« as

f ~«!;«cH. ~33!

In the case of the Lorentz gas, a pair will be certain if the t
trajectories undergo their successive collisions on the s
disks. If we associate with each trajectory a symbolic
quencev0v1•••vn , v i labelling the disk on which thei th
collision takes place, the sequences are identical for a ce
pair. The details of the algorithm used here are describe
Ref. @6#.

In Fig. 6, we have plotted the logarithm of the fraction
uncertain pairs as a function of the logarithm of the smal«
separating the two initial conditions of a pair. The line
curve confirms the power-law behavior@Eq. ~33!# and the
slope gives us a value of the Hausdorff codimension equa
cH50.02. This is in perfect agreement with the value of t
Hausdorff dimensiondH50.98 obtained as the zero of th
topological pressure in Fig. 5~b!.
7-6
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D. Escape rate in terms of the Hausdorff codimension and the
average Lyapunov exponent

Thanks to the Maryland algorithm, we have numerica
access to the Hausdorff codimension. It would therefore
interesting to rewrite the reaction rate@Eq. ~32!# in terms of
the Hausdorff codimensioncH instead of the information
codimensioncI . For this purpose, we expand the press
aroundb51 to the second order inb and use expression
~18! and ~19!, as shown in Ref.@6#:

P~b!52g2l~b21!1 1
2 P9~1!~b21!21o@~b21!2#.

~34!

This expansion is justified as long as the pressure functio
regular aroundb51, as observed in Fig. 5. The Hausdo
dimension being defined by Eq.~28! and the Hausdorff and
information codimensions by Eqs.~30! and ~32!, we obtain

cH5
g

l
2P9~1!

g2

2l3
1o~g2!5cI2

P9~1!

2l
cI

21o~cI
2!.

~35!

From this relation, we can deduce that the difference
tweencH and cI will become smaller and smaller whencI
itself decreases, which means when the information dim
sion of the fractal repellerdI increases. The dimension of th
fractal repeller increases when the escape rate decrease
means for a low densityrs of sinks, i.e., of reacting centers
We can thus expect that the reaction rate@Eq. ~32!# is given
by

g.lcH in the limit rs→0, ~36!

i.e., in the limit where the geometric parametern of our
model defined in Sec. II is large enough. Relation~36! is
well verified numerically, as can be seen in Fig. 7 for diffe
ent values of the interdisk distanced, in the casen52. In
Fig. 7~b!, we depict the ratiocH /(g/l) of the Hausdorff
codimension obtained by the Maryland algorithm to the

FIG. 6. Maryland algorithm: the logarithm of the fraction o
uncertain pairs as a function of the logarithm of the difference«
between the two initial conditions of the same pair, in the c
whenn52 andd52.25, corresponding to Fig. 5. The slope giv
the Hausdorff codimensioncH50.02.
03622
e

e

is

-

n-

that

-

formation codimension given bycI5g/l. We observe that
this ratio is very close to the unit value, already for the co
figuration n52 with only N512 disks for one sink in the
fundamental cell of the superlattice. This result confirms
pectation~36!.

The remarkable feature of relation~36! is that it connects
directly two quantities characterizing the microscopic ch
otic dynamics of the Lorentz gas, namely, the avera
Lyapunov exponentl and the Hausdorff codimensioncH of
the fractal repeller, together with a third quantity describi
the global macroscopic behavior of this open syste
namely, the escape rateg which is identical to the reaction
rate.

VII. DEPENDENCE OF THE ESCAPE RATE AND
HAUSDORFF CODIMENSION ON THE DENSITY OF

SINKS

If the sinks are dilute in the periodic Lorentz gas, t
densityr of the moving particle may be assumed to evol
according to the diffusion equation

] tr.D¹2r ~37!

on spatial scales larger than the interdisk distanced but
smaller than the mean distance between the sinks. For

e

FIG. 7. ~a! Hausdorff codimension as a function of the interdi
distanced, in the casen52. ~b! The ratiocH/(g/l) as a function of
d, in the casen52.
7-7
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periodic Lorentz gas with a finite horizon, the diffusion c
efficient D is positive and finite@23,24#, and its values are
known numerically@7,27#.

For low enough sink densities, the annihilation reaction
thus controlled by the diffusion of the moving partic
among the disks of the Lorentz gas. In the limitrs→0, we
can therefore obtain an estimation of the reaction rate b
method first proposed by Smoluchowski@32#. Because of the
annihilation reaction at each sink, the moving particle
capes at a rateg, which causes the solutions of Eq.~37! to
decay exponentiallyr;exp(2gt). The escape rateg can
thus be estimated by the eigenvalue problem

S ¹21
g

D D r50. ~38!

Because of the absorption of the moving particle at the s
the densityr should be assumed to vanish on the border
the sink, where we impose a Dirichlet boundary conditio

r~r 5a,t !50. ~39!

Strictly speaking, Eqs.~38! and ~39! are not valid in the
small scaler .a, but we must impose an absorbing bounda
condition at the sink, and Eq.~39! is a convenient way to
satisfy this condition within Smoluchowski’s theory@32#.

Furthermore, the triangular symmetry of the superlatt
implies that Neumann boundary conditions should be con
ered on the border of hexagonal cells centered on each
of the superlattice,

]nr~r ,t !uhex50, ~40!

where ]n denotes a derivative perpendicular to the bord
Indeed, the escape rate should correspond to the lea
eigenfunction of Eq.~38!, which is expected to be extremum
on the borderlines between the sinks. These borderlines f
hexagons centered on each sink.

The solution of the eigenvalue problem@Eqs. ~38!–~40!#
can be obtained in polar coordinates by expanding the eig
function in a basis formed by the Bessel functions of inte
order,Jm(qr) and Ym(qr), multiplied by the trigonometric
functions cos(mu) and sin(mu), with g5Dq2. The coeffi-
cients of this expansion should be determined by impos
boundary conditions~39! and ~40! on the eigenfunction.
Moreover, the escape rate should be given by the lead
eigenvalue. In this way, we obtain the following asympto
dependence for the escape rate onN53n2,

g.C
D

d2Nln N
for N→`, ~41!

whereD is the diffusion coefficient,d is the interdisk dis-
tance, one disk overN is a sink, andC is a dimensionless
constant. We note that the logarithmic correction lnN in the
escape rate@Eq. ~41!# has its origin in the two-dimensiona
character of the Lorentz gas.

In Eq. ~41!, the dimensionless constantC can be approxi-
mated by imposing boundary condition~40! on a circle of
radiusr 5nd/2, instead of a hexagon. In this approximatio
03622
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the leading eigenfunction of Eq.~38! is simply given by a
linear superposition of the zeroth-order Bessel functio
J0(qr) and Y0(qr) with g5Dq2, and the boundary condi
tions are satisfied if

Y0~qa!J1S qnd

2 D.J0~qa!Y1S qnd

2 D . ~42!

Using the known expansions of the Bessel functions n
q50 @28#, we obtain as asymptotic expression@Eq. ~41!#
with an approximate valueC.16 for the approximation of
the hexagon by a circle. We remark that the constantC turns
out to be determined only by the Neumann boundary con
tion @Eq. ~40!# and not by the small scale where the abso
ing boundary condition@Eq. ~39!# is taken.

When the Neumann boundary condition@Eq. ~40!# is im-
posed on a hexagon, a numerical approximation can be c
puted for the same constantC, as performed in a previou
work devoted to another type of two-dimensional react
Lorentz gas@22#. In Ref. @22#, the continuous diffusion pro-
cess of Eq.~38! was approximated by a random walk mode
and the numerical approximationC.15.5 was obtained in
the limit N→` for boundary conditions corresponding
Eqs. ~39! and ~40! with a hexagon. We should thus expe
that the exact dimensionless constant is close to the v
C.15.5 in Eq.~41!.

In order to verify the theoretical prediction@Eq. ~41!#
here, we have computed the escape rateg by simulation of
the deterministic and reactive Lorentz gas f
N527,48,75,108, and 147, withd52.25. We have then plot
ted 1/Ng as a function of lnN, as can be seen in Fig. 8. Th
linear behavior of this curve confirms the dependen
g;1/N ln N. Moreover, the value of the slope, here 1.52
allows us to check the value of the constantC. Since the
diffusion coefficient for the Lorentz gas in the ca
d52.25 is equal toD50.20560.003 @6#, our simulation
gives the valueC516.1560.40, which is in reasonable
agreement with the value expected from Smoluchows
theory. We attribute the deviation to the relative smallness

FIG. 8. Dependence of the escape rateg on the sinks density:
one disk overN is a sink,N taking the values 12,27,48,75,108, an
147 ~with d52.25). The dependenceg;1/Nln N, predicted by
Smoluchowski’s theory, is verified here.
7-8
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the configurations for which the present simulation has b
carried out. The agreement should improve if the simulat
was pushed to still larger sizesN.

According to relation~36!, we can expect the same d
pendence onN for the Hausdorff codimensioncH , with a
constantC85C/l. We have computedcH using the Mary-
land algorithm, forN527,48,75,108, and 147, andd52.25.
Figure 9 depicts 1/NcH as a function of lnN. Again we ob-
serve a linear behavior, the slope being equal to 2.985.C8
is then equal to 8.5, which is in good agreement with
value C/l5 16.15

1.9 58.5 expected from the direct numeric
simulation of the escape rate.

Combining Eqs.~36! and~41! and expressing the result i
terms of densities~3! and~4!, we obtain a theoretical estima
tion for the Hausdorff codimension of the fractal repeller in
periodic Lorentz gas with a superlattice of sinks

cH.
A3C

2

D~rd!

l~rd!

rs

ln~rd /rs!
for rs→0. ~43!

This Hausdorff codimension is given in terms of the diff
sion coefficientD, the positive Lyapunov exponentl, the
density of disksrd , the density of sinksrs , and a dimen-
sionless constantC determined only by the geometry of th
superlattice of sinks. We note that, in the limitrs→0, both
the diffusion coefficientD and the Lyapunov exponentl
tend to their value for the periodic Lorentz gas without sin
In this limit, both quantitiesD and l depend only on the
density of disksrd and on the geometry of the lattice o
disks, provided that the horizon is finite in order forD(rd) to
take a finite value. Formula~43! confirms that the fracta
repeller fills the whole phase space as the density of s
decreases because the Hausdorff codimension vanish
this limit.

FIG. 9. Dependence of the Hausdorff codimensioncH on the
sinks density: one disk overN is a sink N, taking the values
12,27,48,75,108, and 147~with d52.25). Considering the relation
g.lcH , we expect a dependence ofcH on N of the form cH

;1/N ln N, that is indeed observed here.
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VIII. CONCLUSIONS

In this paper, we have studied an annihilation proc
induced by the dynamical chaos of the two-dimensional L
entz gas, for periodic configurations of disks and sinks.
have shown the existence of a fractal repeller formed by
trajectories of particles that never escape out of the syst
We have defined a nonequilibrium measure on the fra
repeller, which allows us to characterize its chaotic and fr
tal properties. In this way, we have obtained the differe
characteristic quantities of the repeller, which are the esc
rate, the positive Lyapunov exponent, and the fractal dim
sions. From the expression of the topological pressure, r
tion ~36! between the escape rateg, the positive Lyapunov
exponentl, and the Hausdorff codimensioncH of the fractal
repeller has been obtained in the limit of low densities
sinks. This relation has been numerically verified. In t
present model, the importance of relation~36! holds in the
fact that the escape rate gives the reaction rate, which
thus be expressed in terms of the underlying microsco
chaos. On these grounds, we have studied the dependen
the escape rateg and of the Hausdorff codimensioncH on
the density of sinks.

In the periodic system with one sink overN disks, we
have observed that the escape rate decreases with a d
dence of the formg.C(D/d2N ln N), as predicted by the
diffusion theory of two-dimensional systems. We have n
merically verified that the Hausdorff codimensioncH has a
similar dependence onN, which is in good agreement with
Eq. ~36!. This result led us to derive expression~43! for the
Hausdorff codimension as a function of the densities of di
or sinks. The two-dimensional character of the Lorentz g
together with the periodicity of the system, is at the origin
a logarithmic correction on the densities.

In conclusion, this work reveals that fractals are of spec
importance in chaotic models of reactions by annihilation
spatially extended systems, and that the properties of s
reactive processes can be quantitatively studied by
escape-rate formalism. In particular, the reaction rate can
expressed in terms of the Lyapunov exponent and the H
dorff dimension of fractal sets dynamically generated by
reaction.
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